
/ 

- . -  
U of Iowa 6 5 4  

.-.I--- 

- - .  

v 

I 
P 

GPO PRICE S 

Microfiche (MF) .sei=' 

Department of Physics and Astronomy 

THE UNIVERSITY OF IOWA 
Iowa City, Iowa 



' 1 .  

u. of I- 65-6 

Adiabatic Yatiors of Charged Particles 
in a Dipole Model of the B+-etospkere+ 

Edward W. Hones, Jr.* 

Department of Physics and Astronomy 
University of Iowa 

I3wa city, I m  

* 
On leave of absence from t h e  Inst i tute  for Defense Analyses, 
Washington, D. C. 

Reseazch supported ia part by the National Aeronautics and 
Space Aihinistration under G r a n t  NsG-233-62. 

+ 



2 

ABSTRACT 

The use of the first and second adiabatic invariants of 

charged particle motion i n  calculating the trajectories of 

particles d r i f t i n g  in combined magnetic and electric fields is 

discussed. Such calculations become particularly simple for a 

dipole w e t i c  field if the magnetic lines of force are 

electric equipatentiah. 



3 

In+, r oduc t i on 

!Fhe second, or in tegra l  invariant of charged par t ic le  

motion i n  a magnetic f i e ld  with mirror-geometry has found wide 

use i n  studies of natural and a r t i f i c i a l  radiation belts m z n d  

the earth. It has provided an in&ispensable tool  fo r  organizing 

the measurenents of trapped particles by rockets and ear th  

sstellites and even for  correlating such measurenents with ground- 

based and balloon obsemtions of various phenoaena associated 

with precipitation of particles from the  radiation belts. The 

integral hvariant is useful i n  t h i s  important application, 

however, only in dealing with particles whose kinetic energy is 

great enough that  their  d r i f t  motions consist solely o r  largely 

of mgnetic (gradient ~ n d  l ine curvature) bifts ,  w i t h  electr ic  

f ie lds  producing negligible drift motions. Knowledge of the 

electric f ie lds  in  the magnetosphere i s  incomplete. 

there are, for example, those fields which drive the S and Ds 

current systems and these appear large enough t o  limit simple 

ordering of trapped particle measurements t o  particles with 

kinetic energy greatel- thm 30 or 40 keV. 

However, 

Q 

The existence of an integra3 invariant is not limited t o  

situations i n  which particle d r i f t  motions consist solely of 

magnetic drifts but applies more generally t o  situztions i n  
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which electric f ie lds  influence the par t ic le  motion. N o r t h r q  

and Teller [ l%O] show that  in  the general case where electr ic  

fields (both consemtive and non-conservative) act upon 

particles i n  a magnetic field, the guiding center &ion of the 

particles Will be such as t o  conserve the particles '  magnetic 

moment, integral invariant, and total (kinetic pius potential) 

energy. 

This paper examines the use of these conservation laws 

t o  determine the paths of' charged particles t h r w h  canbir-ed 

magnetic and electr ic  fields, applying them s p e c i f h a y  

(as an example) t o  the determination of part ic le  motions i n  the 

inner portions of the earth's magnetosphere &ere the magnetic 

f i e ld  approximates thst of a dipole. 

assumed, i n  t h i s  example, t o  consist of that  caused by the 

earth's rotation plus that  caused by the solar daily t i d a l  

action in  the ionosphere. 

The electr ic  f i e ld  i s  

are Electric Equipc5entials 

The integral invariant,  J, of par t ic le  notion is: 

J =  5 P ,  ds = ds 

wL w With conservation of a particle 's  w e t i c  moment, M = - = - B Bm' 
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and with the assumption that magnetic lines of force are 

electr ic  eqyipotentids, equation (1) can be written: 

In equations (1) and (2) 

coqozent of a par t ic le 's  manenturn parallel 
t o  w e t i c  line of force 
particle mass 
particle 's  kinetic energy with W1. and W, 
referring t o  the amoun?~ of kinetic energy 
associated with the particle 's  velocity 
components perpendicular and parallel t o  
the magnetic l ine of force 
magnetic f ie ld  strewh 
magnetic f ie ld  strength a t  which the par t ic le  
w i l l  mirror 
integra3 along a line of force between two 
successive mirrorings of a particle 

The term qc has been remved from the integral sign because 

a par t ic le 's  kinetic energy and thus its  mirror point (B,) will 

not change i n  a single bounce dong a line of force (assumed an 

equipotential). 

In the cauplete absence of significant electr ic  fields,  

a particle 's  kinetic energy (and thus B,) remains constant not 

just over a single bounce period, but over any number of bounce 

periods. I n  the% event t2e pzrticle's d r i f t  takes place along 
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, -  the surface on which the quantity, f (1 - B/Bm)'I2 ds is 

constant; this is  the basis of  the parsmeter, L, defined by 

Mcllwain [1%11 ilnd used so mccessfully t o  organize measurements 

of high-energy trapped particles. However, i n  the presence of 

significant e lectr ic  fields, W (and therefore B,) Will cJxmge 

8s the particle m o m s  Prom line t o  l ine,  and the par t ic le 's  

drift w i l l  then be along the surface on which 

is constant. 

Pigure 1 depicts the l iaes  of force and contours of 

constant f i e ld  strength i n  a dipole magnetic field representing 

that of the earth. Also indiczted are contours of constant J', 

labelled wit'n their  values i n  units of (earth radii) x (gauss) I/? 

If a particle gains or loses kinetic energy as it moves thmngh 

the field, i t s  mirror point will move inward or outward, 

respectively, d o n g  the surface of constant S which contains 

its i n i t i a L  mirror point. 

If the particle i n i t i a y  mirrors i n  the equatoria.3. 

plane, J' = 0 and the particle n-mt continue to mirror i n  t he  

equatorial plane. I n  this case, the par t ic le 's  kinetic energy 
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is simply related t o  i t s  radial astance, r, A-om the dipole 

and t o  i t s  i n i t i d  kinetic energy md radial position: 

Rere the subscript, 0, indicates i n i t i a l  values, and tine radial 

positton, r, has been replaced by L, the equatorial redius ( in  

earth radi i )  of the l ine  of force on which the particle is 

located. 

In a conservative electr ic  f ie ld  derived from a pontential, 

V, the to ta l  energy of a dr i f t ing  particle, K = W + eV (e repre- 

sents the particle's charge) is  constant. 

v = v (L, fl), is knuwn as a function of L and jd (fl = tne 

longitude memured from a suitable reference line such as the  

earth-sun line), the particle 's  location, L = L ($), is  simply 

obtained by rewriting (4) as: 

If the potential, 

When the pazticle does not mirror initially i n  the 

eqyatorial plane of the dipole, t3e relation V/W0 = B,/Bm , 
expressing conservation of the magnetic moment still applies 

0 
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but it no longer provides the obvious sinple relation 

(ioeo, W CG (1/L) ) between W and L that  was found i n  

equation (4). 

determine haw Bm (and thus, W) vary with L as a particle 

noms alar! a constant ,f surface. HaJlever, we shall see 

that  this  i s  not necessary because a simple empirical relation- 

ship between Bm and L still amlies for particles mirroring 

outside the equatorial p' l a n e  . 

3 

One can, of course, refer t o  Figure 1 to 

To show what relationsbig - does hold between W (or B,) 

and L with conservatioc of M and J' i n  a dipole field, 

there is plotted, i n  Figure 2, the r a t io  (B, (L)/B, (10) ) 113 

versus the ra t io  (~o/L)  using correspondi2lg; values of 

Bm (L) and L picked along curves of constant J' i n  Figure 1. 

The individua3 points are not shown, but they were found t o  lie 

quite precisely along the  str-ht l h e s  shown i n  the log-log 

p l o t .  !be line for J' = 0 has, of course, unit  slope i n  this 

representation. 

and decrease with ipcreasing J', shacrlrqg that  Bn for particles 

mirroring a t  large angles above ad below the equator varies 

less strangly with L than it does for particles mirroring 

near the equator, The slope, S, of each line i n  Egure 2 is: 

The slopes of' the other l ines  are l e s s  than one 
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and it is easily shown fromthis that, i n  general, 

where a and b refer t o  two different lines of force identified 

by their equatorid. radii La and \. The parameter, S, is a 

f7mction only of 

determined by the i n i t i a l  conditiors of the particles' 

notion. 

J', and3thus, is a constant, as i s  J', 

figure 3 shows malues of tne exponent, y 5 3s plotted 

against J'* It is noted t h a t  y approaches the  value 3 for 

very 8mJl J' 

large J' . Indeed, 7 should approach 2 for very large J' 

because, i~ that limit, &en Bm >> B 

and amears t o  approach the value 2 for  very 

the i n t e g r d  
eq' 

(1 - B/BBm)l/* ds becomes proportional t o  L and t k n ,  M 

keep J' constant with varying L, Em must become prqlortionsl 

t o  I,*.* The m e  of Figure 3,  together with knowledge of the 

--__.- -IC- 

* 
I wish t o  thank Mr. Harold E. Taylor for  pointing out the logic 

of the lower l i n i t i n g  value, 2, of tfie exponent, 7 .  Axford and 
E n e s  119611 reached an analogous conclusion by considering the 
process of energization of low-energy particles t o  be one of 
adiabatic compressicln of tubes of force. 
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i n i t i a l  rriirror point (and, thus, the value, J' ) fo r  a particle, 

permits one t o  use equation (5) i n  the following form t o  trace 

a part ic le 's  path: 

It i s  clear f r o m  equation (8) that particles, i n i t i a l l y  

i n  a single tube of force, will generdly follow different 

paths, the path of each particle depending upon its i n i t i d  

kinetic energy and mirror point  i n  t h e  tube of force. 

In sunnaary, then, equation (8) enables one t o  determine 

the path of a drifting part ic le  (that is, L versus 8) i n  a dipole 

w e t i c  field ( in  wt.;ich the l ines  of force are equipotentials) 

when tbe charge of the particle, its i n i t i a l  ki3etic efiergy, and 

initial mirror point are known and Then the distribution of 

e lectr ic  potential among the f i e ld  l ines  is stated. 

drift path of the par t ic le  is tius established, Bm (and thus the  

kinetic energy) at each p o i n t  is hcwn, since B,/Bm = (LJL)', 

and the mirror altitude i s  determine2 fromthe mirror f fe ld  

When the 

0 

strength Bm. 



Il lustration of U s e  of Poregoirs 
Results 

Ma&a [19] presents the world-wide distribution of the 

electrostatic field i n  the E-region (as deduced from geomagnetic 

data) i n  potential form as follows: 

v(a,e,B> = a C (A" cos m + B" sin m $1 P" (cos e )  n n n 
(9) 

n m  

where 8 = colatitude 

jb = longitude (or local time i n  angular measure, 
reckoned f r o m  midnight) 

a = radius of 'onospheric current sheet 
(6.48 x 10 8 an) 

9' (COS e )  n 
= ScMdt ' s  Functions [see Chapman and Barbels, 

19621 

Maeda lists the values of the harmonic coefficients A: and < 
for  quiet days. 

compute V (aye,$) for every five degrees of longitude, 6, 
and for values of' 8 corresponding to  &values from 1 Re to  

10 Re i n  0.2 Re increments. (L is  related t o  8 by 

sin 8 = l/L) lkis potential distribution, projected along 

We have used his values i n  equation (9) t o  

2 

l ines  of force into the equatorial plane of the dipole field, 



is sketched i n  Figure 4. 

near midnight and a l o w  potential near noon. 

E-region rotates with the earth (at  least at low latitudes) 

one must add the co-rotational electric field given by the 

potential: 

One sees a relative high potential 

Since the 

v = 7 % (1 - 6) 1 (volts) 
10 a 

where M, = magnetic moment of earth 
CI 

(8.1 x 1~~~ gauss-cm3) 

W - angular velocity of earth E -  
a = radius of ionospheric current sheet. 

This becomes 

v =  p(1 

The sum of the two 

1 - E) kilovolts. 

potentials, projected into the eqyatorial 

plane of the dipole field, is sketched i n  Figure 5 .  

To i l lus t ra te  the use of the invariants of particle motion 

i n  calculating par t ic le  d r i f t  pa%hs, we have used equation (8), 

together with t h e  coquted d u e s  of potential depicted i r ?  
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Figure 5 t o  calculate the path of a 1keV electron in i t ia l ly  

mirroring on the L = 3 l ine a t  nidnight and an altitude of 

160 km where B z 0.5 gauss. For this i n i t i a l  mirror point, 

our calculations (from wbich the 

sketched) show that J' = 4.0. Therefore, by Figure 3, 

y w 2.2. 

l ine  i s  - 65 kV. 

computed values is 65.288 kilovolts.) 

the path consists simply i n  choosing various values of L 

(i.e., L = 2.8, 2.6, etc.) from those for which V W F L ~  computed, 

taking the rat io  of each t o  Lo (which was 3.0) and solving fo r  

the corresponding values of V. Then, since V is known, 

for  each L, as a function of $, one finds the longitude 

(9) 

J' curves i n  Figure 1 were 

Figure 5 shows t h a t  the potential of the  i n i t i a l  

(The precise value taken f r o m  the tables of 

The determination of 

at  which the particle crosses each Lshel l .  

These particular starting conditiocs were ckosen i n  

order t o  provide a comparison of our results with those of 

Maeda who presented (his Figure 4) the  kinetic energy vzriation 

of a 1 keV electron with very similar i n i t i a l  conditions 

( i n i t i w  mirroring at 120 lan altitude on the L = 3.09 l ine  

a t  midnight ) . 
numerical integration of the work done by the electric f ield 

depicted b Figure 4 upon the drift ing electron, presumably 

as the mts,.tirg xmgeto,pliere carried it through %his p9tential 

cattern. 

&&a' 8 method of cdculation involved a 
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Figure 6 shows the kinetic energy versus local time as 

calculated by W d a  (dashed curve) and by us (solid curve) - 
'Ihe two curves are quite similar. 

as tbey simply represent the resuZts of doing the same calcula- 

tion two different ways; t h i s  particular calculation has been 

presented simply t o  i l lustrate the method described i n  the 

foregoing sections. 

This is not surprising, 

Conclusions 

Use can be made o f t h e  fact of conservation of the first 

and second adiabatic invariants i n  determining paths of 

particles, not only i n  a pure magnetic field, but also i n  

combined magnetic and electric fields. 

attractive when the magnetic l ines of force are equipotentials 

of the electric field, a situation which probably prevails 

widely i n  the magnetosphere. 

a dipole the tracing of particle paths becomes very Simple 

because the mirror f i e ld  strength, Ba, and thus the kinetic 

energy, W, depends explicitly upon L. The nature o f t h i s  

dependence is a functiim only of the i n i t i a l  mirror position 

of the particle and we have found that, +A very good 

approxination, 

WAS becomes p&icularly 

If the m e t i c  f ield is that of 
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where y,  determined empirically, ranges from 3.0 for particles 

moving only in the equatorial plane (i.e., J' = 0) to  -., 2 for 

particles mirroring at high latitudes (i .e , large J' ) . 
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Figure 1. Dip3.e f i e ld  of the earth, showing Unes of force, 
contours of constant field strength, and contours of 
constant J'. 

As a particle gains or loses kinetic energy its mirror 
point moves inward or outward along a contour (i.e., 
surface) of constant J' and the kinetic energy varies 
directly as the mirror f i e ld  strength, Bm. 

Units of J' are (earth radii) x (gauss) 

Figure 2. The ratio, (B, (L)/B, plo+,ted versus (lO/L) 
for VaTious d u e s  of J' . 
strength of a particle, having a given J', on the 
L = 10 line. Bm (L) is the mirror f i e ld  s t r e q t h  of 
a par t ic le  having the same J' but on another line L. 

Bm (10) i s  the mirror field 

The units of J' are (earth-radii) x (gauss 1/2) . 
Figure 3. The elrponent, 7 5 3s plotted against J' . 

y has the value 3 for J' = 0 (i.e., particles mirroring 
i n  the equatorial. plane) and approaches 2 for  large 

J' (i.e., particles mirroring at  high latitudes). 

Figure 4. Potential distribution i n  equatorial plane of dipole 
field as calculated from data of Weds [19&1 . 

Figure 5 .  Potential distribution i n  equ to r i a l  plane of dipole 

field.  The co-rotation potential is included. 

Figure 6. Variation of kinetic energy of an electron with local 
time. 
with 1 keV kinetic energy a t  160 km alt i tude on the L = 3 
l ine  at  midnight; calculation done by methods described i n  
t h i s  paper. 
[19<4] and applies t o  a 1 keV electron on L = 3.09 line.  

Solid curve represents electron i n i t i a l l y  mirroring 

Dashed curve is taken from Figure 4 of Mae& 



00 

00 1 

ooz 

OOE 

0 Ol7 

00s 

01 

0'2 

O E  

0i7 

0% 

09 

02 

0'8 

06 

00 I 

L3 a 
111 

rl 

w 



C 



1 -  c 

0 

i 

x 



c 

90 

Figure 4 



Figure 5 

. 



. 0 

OM / M 

n 
L- 
X 
U 

W 


